
Algorithm Design and Analysis (Spring 2024)

1. (25 points) Prove the following generalization of the master theorem. Given constants

a ≥ 1, b > 1, d ≥ 0, and w ≥ 0, if T (n) = 1 for n < b and T (n) = aT (n/b) + nd logw n,

we have

T (n) =


O(nd logw n) if a < bd

O(nlogb a) if a > bd

O(nd logw+1 n) if a = bd

.

2. (25 points) Let us consider the (randomized) quick sort algorithm, where we choose

pivots uniformly at random. How to analyze its expected time complexity?

(a) (25 points) Prove its expected time complexity is O(nc) for some c < 2 by using a

similar method in the lecture. (You can choose the constant c you want.)

(b) (0 points, have fun!) Prove its expected time complexity is O(n log n).

Tips: Consider the i-th smallest element xi and the j-th (j > i) smallest element xj.

Prove that they will be compared in quick sort if and only if xi or xj is the “first”

appeared pivot among i to j. What is its probability?

3. (25 points) Given an n × m 2-dimensional integer array A[0, . . . , n − 1; 0, . . . ,m − 1]

where A[i, j] denotes the cell at the i-th row and the j-th column, a local minimum is a

cell A[i, j] such that A[i, j] is smaller than each of its four adjacent cells A[i−1, j], A[i+

1, j], A[i, j− 1], A[i, j+1]. Notice that A[i, j] only has three adjacent cells if it is on the

boundary, and it only has two adjacent cells if it is at the corner. Assume all the cells

have distinct values. Your objective is to find one local minimum (i.e., you do not have

to find all of them).

(a) (10 points) Suppose m = 1 so A is a 1-dimensional array. Design a divide-and-

conquer-based algorithm for the problem above. Write a recurrence relation of the

algorithm, and analyze its running time.

(b) (15 points) Suppose m = n. Design a divide-and-conquer-based algorithm for

the problem above. Write a recurrence relation of the algorithm, and analyze its

running time.

(c) (0 points, have fun!) Generalize your algorithm such that it works for general m

and n. The running time of your algorithm should smoothly interpolate between

the running times for the first two parts.

Tips: You can first think about whether the local minimum must appear, and try to

find out the reason.
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4. (25 points) An integer triple (x, y, z) forms a good order if y − x = z − y. Given an

integer n, we call a permutation of {1, . . . , n} (denoted by X = {x1, x2, . . . , xn}) is out-
of-order if it has the following property: for every i < j < k, the triple (xi, xj, xk) does

not form a good order (i.e., xj − xi ̸= xk − xj).

(a) (3 points) Prove that an integer triple (x, y, z) forms a good order only if x and z

are both even or both odd.

(b) (5 points) Write down a permutation of {1, . . . , 4}, and quickly prove it is out-of-

order by the claim above.

(c) (3 points) Prove that an integer triple (x, y, z) where x, y, z are all odd forms a

good order only if ((x+ 1)/2, (y + 1)/2, (z + 1)/2) forms a good order.

(d) (14 points) Design a divide and conquer algorithm runs in O(n log n) time to out-

put an out-of-order permutation of {1, . . . , n}. (The running time can be improved

to O(n).)

5. How long does it take you to finish the assignment (including thinking and discussion)?

Give a score (1,2,3,4,5) to the difficulty. Do you have any collaborators? Please write

down their names here.
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AI2615 Homework 1

Tao Rui 522030910024

March 23, 2024

1 Prove the Generalized Master Theorem

As the diagram showing:
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where k subject to the final condition:
n

bk
< b , k ⩾ logb n

1○ a ⩽ bd

As the function g(i) = logω
(
n
bi

)
is monotonic decrease. We can expand all

terms logω
(
n
bi

)
, i ⩾ 1 to the max term logω n

T (n) ⩽ nd logω ·
[
1 +

( a

bd

)
+

( a

bd

)2

+ · · ·+
( a

bd

)k
]

1○.1 If a = bd, the summation turns to be (k+1), which is logb n = C · log n

T (n) ⩽ C · nd logωn · log n = O
(
nd log ω+1n

)
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1○.2 If a < bd, The summation turns to be as follow

T (n) ⩽ nd logω n
1−

(
a
bd

)k+1

1− a
bd

Replace (k + 1) by logb a, and bring nd into it:

= C · logω n
(
nd − alogb n

)
Use the the identical equation alogb n = nlogb a, and the assumption a < bd

we know that
(
nd − alogb n

)
is dominated by nd

T (n) ⩽ C · nd logω ⇒ T (n) = O
(
nd logω n

)
2○ a > bd

Notice the function h(i) =
(

a
bd

)i
logω

(
n
bi

)
is not monotonous. Take the

derivative:
h′(i) = −i2 log b+ i log n− aω

bd
log b

i1,2 =
log n±

√
log2 n− Const

2 log b
, where Const =

4aω

bd
log b

Lemma: The maximum term is obtained at i = i2 but not at i = 0

⋆ Proof ⋆

h(i2)− h(0) =
( a

bd

)logbn−1

logω b− logω n

= nlogba−d · b
d

a
logω b− logω n

Since logba − d > 0 at this situation, the inequality C · n∆ − logω n > 0 for
any ∆ > 0 holds, which means h(i2) > h(0), the maximum term is obtained at
i = i2 = logb n− 1

■

Apply the limitation n −→∞, we obtain that i1 is slightly larger than 0, i2 is
slightly smaller than logb n. But consider the fact that h(logb n) = 0, then
the right-side maximum term is obtained at i = logb n− 1

Further, we need compare the left-side(0) and right-side(logb n − 1) maxi-
mum. By the Lemma proved above, the entire sequence’s max term is obtained
at i = logb n− 1
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Now we can do the scaling:

T (n) ⩽ nd
( a

bd

)i2
logω

( n

bi2

)
= nd · b

d

a

nlogba

nd
· logω b

= C · nlogb a = O(nlogb a)

Combine 1○.1, 1○.2, 2○ we prove the generalized master theorem

T (n) =


O
(
nd logw n

)
if a < bd

O
(
nlogb a

)
if a > bd

O
(
nd logw+1 n

)
if a = bd

2 Randomized Quick Sort Analysis

Consider the first pivot choice, it’s uniformly distributed to choose any n
numbers as pivot.

If we choose the i-th pivot, we divide problem into two scale of i − 1 and
n− i, the next layer cost will be T (i− 1) + T (n− i) + cn since we need linear
time to merge them together.

Therefore, the average time cost is:

T (n) =

n∑
i=1

p(i) (T (i− 1) + T (n− i) + cn)

=
1

n

n∑
i=1

(T (i− 1) + T (n− i) + cn)

= cn+
2

n

n−1∑
i=0

T (i)

Now we transform this into a calculable series problem. First multiple n on
both side, and substitute n −→ n− 1

nT (n) = 2

n−1∑
T (i) + cn2

(n− 1)T (n− 1) = 2

n−2∑
T (i) + c(n− 1)2
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Subtract them, and divide n(n+ 1):

T (n)

n+ 1
=

T (n− 1)

n
+

2c

n+ 1
(♣)

Now we concentrate on solving this series (♣). It implies

{
T (i)

i+ 1

}
is a

near-arithmetic series.

T (n)

n+ 1
=

2c

n+ 1
+

2c

n
+

2c

n− 1
+ ...+

2c

3
+

T (1)

2

= Const + 2c

n+1∑
i=3

1

i

= Const + 2c · log n+ γ − 3

2

The last equality is due to Euler’s summation techniques, and γ = 0.5772...
refers to Euler’s constant. Then eliminate all the constant, we obtain:

T (n) = O(n log n)

Of course the expectation after randomizing is faster than O(nc) , ∀c ∈ (1, 2)

3 Find Local Minimum in Matrix

We will assume n = 2N . Without loss of generality, we can complement n
to some power of 2 by INT MAX. In 2-dimension case, which will be shown
below, the n = 2N and m = 2M is not required. But we need to expand a circle
outside with INT MAX for convenience.

Now we firstly prove two Lemma that guarantee the existence of local min-
imum under border condition.

Figure 3.1: Existence of local minimum under bigger-border condition
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Lemma 1: If a 1-dimensional space has bigger elements on its left and right
side, there must exist a local minimum inside this space.

⋆ Proof ⋆

(Shown in 3.1 left)Suppose there’s no local minimum. Because the left-side is
bigger element, if the 1st one is not local minimum, the 2nd one should decrease
a bit. Recursively, every element from left side should decrease one by one.
Similarly, every emelent from right side should decrease one by one. When the
two sequence meet at k-th element. ak < ak−1 and ak < ak+1, which means ak
is a local minimum.
Which is contradictory to assumption, thus there must exist a local minimum.

■

Lemma 2: If a 2-dimensional space is surrounded by bigger elements, there
must exist a local minimum inside this space(Not restrict to m × n space, but
with any closed space).

⋆ Proof ⋆

(Shown in 3.1 right)Similarly as 1-dimensional case, suppose there’s no local
minimum. We start from any border. Since the border are bigger than the aside
one, the inner layer should decrease a bit(to not let out layer be minimum). We
follow this downstairs flow. The flow will at last end in somewhere because
there are finite distinct numbers. That ending is the local minimum.
Which is contradictory to assumption, thus there must exist a local minimum.

■

3.1 1-Dimensional Case(m=1)

The 1D algorithm is shown as following pseudocode 1.

3.1.1 Correctness

The idea is check whether a position is local minimum from the center of array.
What Lemma 1 says is that: it’s guaranteed the existence of a local minimum
at any section with bigger number on both side.

Thus, if the center of array is not local minimum, we just check which side
of it is smaller. Choose that side, we get a n

2 length array still with
bigger number on both side, which still guarantee the existence of
local minimum.
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1D case: m = 1

0: function check(l, r)
if l equals r then
return n[l]

end if
mid← l+r

2
if n[mid] is local minimum then
return n[mid]

else if n[mid-1] < n[mid+1] then
return CHECK(l,mid− 1)

else
return CHECK(mid+ 1,r)

end if
end function=0

Recursively, each time we will either find the local minimum, or get a smaller
section with bigger number on both side, which is guaranteed to have local
minimum inside.

In the end, when the length of section reach 1, it’s guaranteed by previous
induction that this single position is local minimum.

3.1.2 Complexity

Check whether a single point is local minimum costs constant time c. And each
time we will divide length by 2. Thus

T (n) = T (
n

2
) + c× 1

= T (1) + c× (1 + 1 + ...+ 1)

⇒ T (n) = O(log n)

3.2 2-Dimensional Case(m=n)

The 2D algorithm is shown as following pseudocode 2. And 3.2 shows how to
find next conquered area in general.

3.2.1 Correctness

The Lemma 2 implies that any area with bigger number in border, are certainly
to have local minimum inside.

In order to find such sub-area, we divide n×n into 4 areas and check all the
points on border(refers to border outside and middle row and middle column),
as shown in 3.2.

If any points are local minimum, return it. Otherwise, we find the smallest
points among border. Consider the fact: 1○ it’s not local minimum 2○
it’s smaller than aside borders. ⇒ It’s must bigger than at least one
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Figure 3.2: Recursively find smallest points in critical area, and compare the
two points aside to decide what’s next area to be checked

element inside area. What’s more, for every points on border, if it’s not local
minimum, it must smaller or bigger than the number inside the area. If the
border is bigger, it’s great that already build a ’wall’. If the border is smaller,
we can push the border either inside or outside one cell to reach the ’wall’.

Finally, we will form a closed space like 3.2 shows. By the Lemma 2, it’s
guaranteed to have local minimum inside this area which has been narrowed
down into n

2 . In the end, when the size of section reaches 1× 1, it’s guaranteed
by previous induction that this single position is local minimum.

3.2.2 Complexity

Since checking all the border, middle row and middle column will only cost
4(n − 1) + 2(n − 2) = c · n linear times. And each time we will divide the
problem into n

2 size, because we only check 1
4 area next time.

T (n) = T (
n

2
) + c · n

= T (1) + c · n
(
1 +

1

2
+

1

4
+ ...+

1

2logn

)
= C1 + C2 · n · (1−

1

2logn
)

As n→∞, T (n) = O(n)
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2D case: m = n

0: function check(r1, r2, c1, c2)
if r1 equals r2 then
return n[r1][c1]
end if
mid row ← r1+r2

2
mid col← c1+c2

2
critical area← {Border, mid row, mid col}
for point ∈ critical area do

if n[point] is local minimum then
return n[point]

end if
end for
// Here means no local minimum in critical area
smallest← smallest point in critical area
Decide which side of smallest is smaller
Go into that square:
if 1-quadrant then

return CHECK(r1,mid row,mid col, c2)
else if 2-quadrant then

return CHECK(r1,mid row, c1,mid col)
else if 3-quadrant then

return CHECK(mid row, r2, c1,mid col)
else if 4-quadrant then

return CHECK(mid row, r2,mid col, c2)
end if
end function=0

4 Out-of-Order Sequence

4.1 Prove that an integer triple (x, y, z) forms a good order
only if x and z are both even or both odd.

⋆ Proof ⋆

If (x, y, z) forms a good order, then y−x = z−y = Const⇒ z = x+2·Const,
which means x and z are both even or both odd.

■
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4.2 Write down a permutation of {1, 2, 3, 4} and quickly
prove it is out-of order by the claim above.

⋆ Proof ⋆

For example, the permutation {1, 3, 2, 4}. Two odd number are put left-side,
while two even numbers are put right-side. No matter how we randomly choose
three numbers, it must be in the order that Odd-Odd-Even or Odd-Even-
Even, which are both not good-order proved in 4.1. Thus the permutation is
out-of-order.

■

4.3 Prove that an integer triple (x, y, z) where x, y, z are all
odd forms a good order only if (x+1

2
, y+1

2
, z+1

2
) forms a

good order.

⋆ Proof ⋆

If (x, y, z) forms a good order, consider that they are both odd y − x =
z − y = 2d. Then we can note y = x+2d , z = x+4d, and suppose x = 2k− 1

Then the chain is:(
2k

2
,
2k + 2d

2
,
2k + 4d

2

)
⇒ (k, k + d, k + 2d)

which forms a good order.
■

4.4 Design a divide and conquer algorithm runs in O(n log n)
time to output an out-of-order permutation of 1, ..., n.
(Can be improved to O(n))

4.4.1 Algorithm and Correctness

Figure 4.1: Divide the problem
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We’d better not put odd and even numbers together, therefore we can
never satisfy the necessary condition for good-order: x, z should be
both odd or even

Without loss of generality, suppose n = 2k is an even number. We divide it
into odd and even parts, shown as 4.1.

By question 4.3 we know that if we make ( 1+1
2 , 3+1

2 , ..., 2k−1+1
2 ) not a good-

order sequence, then (1, 3, ..., 2k − 1) is not a good-order sequence as well.
In the same way, if we make ( 22 ,

4
2 , ...,

2k
2 ) not a good-order sequence, then

(2, 4, ..., 2k) is not a good-order sequence as well.
And these two sequences are exactly (1, 2, 3, ..., k), which can be solve by

recursively call this function.
when k ⩽ 4, by question 4.2, we know that we can simple return (1, 3, 2, 4)

which is out-of-order.

4.4.2 Complexity

Each time we divide the 2k size problem into one k size problem. After solving
the k size problem, we need linear time to compute the original sequence.

i.e. If we get the out-of-order permutation of (1, 2, 3, ..., k) as (a1, a2, ..., ak),
then the original odd out-of-order sequence will be (2a1 − 1, 2a2 − 1, ..., 2ak − 1),
and the even out-of-order sequence will be (2a1, 2a2, ..., 2ak). This requires O(n)
time.

T (n) = T (
n

2
) + cn

= T (4) + cn ·
(
1 +

1

2
+ ...+

1

2logn−2

)
= 1 + c′n

(
1− 1

2logn

)
⇒ T (n) = O(n)

5 Reflection

4 hours in thinking. 1 hour in discussing and consulting references. 8 hours in
drawing diagram and writing latex (somewhat due to OCD).

I suppose I will rank the difficulty to 4, especially as the first homework.

Reference Data Structures and Algorithm Analysis in C. Mark A.Weiss.

Collaborator Zhu Shengjia (Discussion for Question 3)
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Algorithm Design and Analysis 2024 Spring
Assignment 2

1. (20 points) Please prove the Super Plan of the Strongly Connected Component Algo-
rithm presented in the lecture is correct.

2. (20 points) Given a directed graph G = (V,E), and a reward rv for all v ∈ V . The
revenue of a vertex u is defined as the maximum reward among all vertices reachable
from u (including u itself). Design a linear time algorithm to output every vertex’s
revenue.

3. (20 points) Given a directed graph G = (V,E) on which each edge (u, v) ∈ E has a
weight p(u, v) in range [0, 1], that represents the reliability. We can view each edge as
a channel, and p(u, v) is the probability that the channel from u to v will not fail. We
assume all these probabilities are independent. Give an efficient algorithm to find the
most reliable path from two given vertices, s and t. (A path fails if any edge on the
path fails. The most reliable path means the path with the lowest failure probability.)

4. (20 points) Let G = (V,E) be an undirected connected graph. Let T be a depth-first
search tree of G. Suppose that we orient the edges of G as follows: For each tree edge,
the direction is from the parent to the child; for every non-tree (back) edge, the direction
is from the descendant to the ancestor. Let G′ denote the resulting directed graph.

(a) (5 points) Give an example to show that G′ is not strongly connected.

(b) (5 points) Prove that if G′ is strongly connected, then G satisfies the property that
removing any single edge from G will still give a connected graph.

(c) (5 points) Prove that if G satisfies the property that removing any single edge from
G will still give a connected graph, then G′ must be strongly connected

(d) (5 points) Give an efficient algorithm to find all edges in a given undirected graph
such that removing any one of them will make the graph no longer connected.
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5. (20 points) Let G = (V,E) be a graph and s be a vertex such that there is a path
from s to each u ∈ V . We say G is a good graph if there exists a tree T = (V,E ′) that
share the same vertex set V with G such that T is both a depth-first search tree and a
breadth-first search tree.

(a) (5 points) If G is an undirected graph, prove that G is a good graph if and only if
G is a tree.

(b) (10 points) If G is a good directed acyclic graph, prove or disprove that the vertex
set V can be sorting in an array L such that L is both an ascending order of the
distances from s and a topological order.

(c) (5 points) Prove or disprove the converse of (b). That is, if G is a directed acyclic
graph where the vertex set V can be sorting in an array L such that L is both an
ascending order of the distances from s and a topological order, then G is a good
graph.

6. How long does it take you to finish the assignment (including thinking and discussing)?
Give a score (1,2,3,4,5) to the difficulty. Do you have any collaborators? Write down
their names here.
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AI2615 Homework 2

Tao Rui 522030910024

April 14, 2024

1 Prove the Super Plan of SCC

Lemma: If SCC1 can reach SCC2 in GR, then max
v∈SCC1

finish[v] >

max
u∈SCC2

finish[u].

⋆ Proof ⋆

Firstly, the latest finish vertex in one SCC1 must be earliest start vertex. Since
the first one is ”entrance”, the entrance cannot end before all vertices in SCC
are done.
Suppose latest finish vertex in SCC1 is x1 and SCC1 can reach SCC2 by path
u→ ...→ v. No matter what the exploration like in SCC2, and no matter what
other SCC that SCC2 can reach, they will not back to SCC1 until finish SCC2,
otherwise there’s a big ring.
Thus the finish time of u is latest than SCC2, which implies:

max
v∈SCC1

finish[v] = finish[x] > finish[u] > max
v∈SCC2

finish[v]

■

We first DFS the GR and maintain a sorted list by the finish time. Then
the latest finish vertex must in the head SCC of GR, denote as SCC0.

Then the second latest finish vertex in SCC1 ∈ {V − SCC0} must be the
head SCC of {GR − SCC0}. Because of Lemma, if max

v∈SCC1

finish[v] is the

largest, then no other SCC can reach SCC1, which implies SCC1 is the head
SCC of {GR − SCC0}.

Repeatedly doing this, we know that regardless of the head SCC found
previously, the next latest finish vertex must in a SCC that no other SCC
can reach, which is the next head SCC.

Thus the ”super plan” algorithm keep exploring vertices by descending order
of the finish time can indeed find all tail SCC of G in order. By the tail SCC’s
order, simply doing DFS can find all SCC.
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2 Directed Graph Vertice’s Revenue

2.1 Intuition

What this problem wants us to output can be reansformed to: firstly find
all SCC, then, for each SCC outputs the maximum revenue for every vetices in
it.

The simple idea is we can firstly use the super plan in Problem 1 to find
the sequence of finish time. And use this sequence to do DFS to find all SCC
component. During each finding, we can by the way record the maximum
revenue of those vertices in same SCC.

1: DFS set start/finish time
- Use the Super Plan in Problem 1 to obtain a sorted sequence of finish time.

2: Compare max revenue in each SCC
- DFS G by the descending order of the sequence.
- If visited v, continue.
- Else, CurrentMax = max(CurrentMax, rv), and record this vertex

3: Output
- For each SCC, print the vertices in it and the CurrentMax of it.

2.2 Correctness

The ”Super Plan”’s correctness has been proved by Problem 1, thus we have
legally obtained the SCC components. In step 2, we DFS all the SCC (each
time DFS the current tail SCC), during each SCC, we record the max revenue
rv in this SCC by one-to-one compare. Finally, those maximum values can be
output together with vertices in each SCC.

2.3 Complexity

The ”Super Plan” will cost O(|V |+ |E|). The second turn of DFS will cost
another O(|V |+ |E|). Comparing each revenue will be linea O(|V |). Thus total
time complexity is O(|V |+ |E|)

3 Find Path with Lowest Failure Probability

The problem can be solved by Dijkstra with some marginal adaption. Note
that p(u, v) is the multiplication of all edges in the path between u and v. What
we need to find is the maximum of such multiplication.
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1: Initialize
- T ← {s}
- tdist[s]← 0, tdist[v]← inf for all v other than s
- tdist[v]← p(s, v) for all (s, v) ∈ E

2: Explore
- Find v /∈ T with largest tdist[v]
- T ← T + {v}

3: Update tdist
- tdist[u] = min(tdist[u], tdist[v] + w(u, v)) for all (u, v) ∈ E

4: Repeat step 2 until T = V

3.1 Correctness

The proof is exactly same as the proof of original Dijkstra, thanks to the
important fact that ”Addition on R+” and ”multiplication on (0,1]” has
exactly same property in terms of monotonicity. — they are monotonic
increasing and decreasing respectively.

Prove by induction, suppose we start from s. If at some moment, the set
T contains all the maximized success possibility path. Then finding the vertex
x with max tdist[x] (the max success possibility from s to x), which connects
some t inside T and x outside T . Then the path s → ... → t → x must be
global maximum. Because 1○ path that not pass t is smaller since tdist[x] is
maximum at this round. 2○ path that pass other x1 to x will be smaller since
the path to x1 is already larger than s→ ...→ t.

3.2 Complexity

If we don’t use any heap to optimize the sorting process, our original com-
plexity is shown bellow:

• Step 2: Cost from O(|V | − 1) to O(1) in each iteration.

• Step 3: Cost O(1) to update.

• Step 4: The finding minimum operation will cost O(|V |) rounds. The
updating operation will cosr O(|E|) round iteration.

Thus the total time complexity is O(|V |2 + |E|)
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4 Connected Graph DFS Tree

4.1 Counter example that G′ not strongly connected

If we give a undirected graph as following (Eliminate all the arrow will be
the case). Firstly, it’s easy to check the graph G is connected. But if we start
exploring from A○ and form the DFS tree as follow, it’s obvious that E○, F○
cannot back to A○. Thus G′ is not strongly connected.

Figure 4.1: Directed G′ of undirected counter example

4.2 Property: removing any single edge from G is still
connected

Figure 4.2: Proof by Contradiction

Now prove from contradiction: If there’s an edge that can destroy connection.
Like C○- E○ as shown. Then we can explore the DFS tree from one of the two
points, for example C○.

Consider two fact: (1). The two part is connected respectively (2). Beside
C○- E○, there’s no edge connecting two part, otherwise G is still connected.

Therefore, there’s no back-edge from the {E,D,F} part to vertex
C○. Thus in the directed graph G′, any starting vertex from {E,D,F} can-
not reach any vertex in {A,B,C}. G′ Not strongly connected, which leads to
contradictory. We prove the property must to be right.

4.3 Prove the Reversed Property

We find that in 4.1 even though D○- B○ is connected by a back-edge, D○ is
still isolated from A○. That’s because B○ cannot reach A○ as well, so D○’s path
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ends here. This above intuition reminds us to check the connectivity from leaf
to root.

Figure 4.3: Intuition of how to maintain G′ strongly connected

From any leaf, such as D○. To reach the root vertex, it has to need to climb
up the tree by connecting to any ancestor. If no back-edge connects the
leaf, then delete its tree-edge, it will be isolated in original undirected
graph, which contradicts to the condition that graph should still be
connected after deleting one edge.

Now the leaf linked by a back-edge to some ancestor above on the DFS tree,
such as B○. Then all the vertices under B○ to leaf can be reached by
each other.

So we can regard all these vertices beneath as a ”super vertex”(Shown by
shadow). And this super vertex must have a back-edge from inside to
some ancestor above. Otherwise, delete this super vertex’s highest tree-edge,
then it’s isolated by the above tree, which contradicts to the condition that this
undirected graph should be connected after deleting one edge.

Repeat this process, each time enroll the vertices that beneath the back-
edge’s ending into ”super vertex”. Until reach the root.

As conclusion, we prove that for any DFS tree, there must exist
a path from any leaf to root. Thus all the vertices are reachable by each
other, since they can simply reach leaf first, then back to root by the path
proved above, and go down the DFS tree to the target vertex. ⇒ G′ is stongly
connected.

4.4 Give an Algorithm to Find All Single Cut-edge

4.4.1 Intuition

The intuition is that we can iteratively shrink vertices from below, and when-
ever we find no back-edge point to ancestor, the tree-edge here is a single cut-
edge.

What we maintain is a recorder of what’s the earliest ancestor this ”super
vertex” can reach.

4.4.2 Correctness

By the recorder’s definition, the correctness is easy to prove.
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1: DFS Explore
- start DFS explore from given vertex u
- If the vertex is not reached, set start[u] ← time && recorder[u] ←
time && time++
- Keep DFS first.

2: Update recorder[u] from below
- For all neighbors v of u doing the following updating
- If v is father of u, continue
- If v is not father of u but visited, recorder[u]← min(recorder[u], start[v])
- Else, recorder[u]← min(recorder[u], recorder[v])

3: Check single cut-edge
- For all edges (u, v), check if start[u] < recorder[v], then it’s a single cut-edge.

Figure 4.4: How cut-edge takes shape

For all sons v of vertex u. If recorder[v] ⩽ start[u], means from this neighbor
v can reach their father or earlier ancestor by some path(not passing the edge
connecting v’s father), which further implies this can be shrinked into a new
”super vertex”.

If recorder[v] > start[u], then from v can only reach recorder[v] where is
later than u, which further means v cannot reach u and above. In this situation,
cut off the edge (u, v) can isolate the graph at least as u-part and v-part. (u, v)
is a single cut-edge.

4.4.3 Complexity

The total DFS will cost O(|V |+|E|). Total updating recoder will be complex
as total edge number, O(|E|). Thus total algorithm’s complexity is O(|V |+ |E|)

5 Good Graph

5.1 Undirected G is Good Graph iff G is Tree

1○ If G is a tree, which means edge number is |V | − 1 and there’s no rings
in graph.

Given a starting vertex, the BFS tree is fixed. Consider that this is a tree,
there will be no cross-edge or back-edge in any kind of exploring.

6



Therefore, the DFS exploring of this BFS tree is the same, since no ”fork junc-
tion” exist.

2○ If G is a good graph. Let’s firstly generate a BFS tree as following (since
BFS tree is fixed with given starter).

Figure 5.1: BFS Tree’s Edge Property

Now consider how the DFS exploration on this graph can result in different
tree? There must exist some edge that links two different branch, so
that DFS will merge these two branch.

Now discussion on edge’s type:

• back-edge : Which will not exist in undirected graph’s BFS tree.

• front-edge : Which is same as back-edge in undirected graph.

• cross-edge : As 5.1 shown, the cross-edge can only exist between two
vertices that |height(u) − height(v)| ⩽ 1, otherwise the BFS process will
reach by this shorter path.

As conclusion, there may be some cross-edge in the BFS tree. However, if
a cross-edge exist between two branches SubTree(u) and SubTree(v), then the
DFS process will merge these two brach, since they are reachable by each other.
Which means if there exist any cross-edge, the DFS tree is certainly not same
as BFS tree.

5.2 Counter Example for (b)

Figure 5.2: All cross-edge must have same direction
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Intuition: The property of good graph in DAG.

Before giving the counter example of (b)(c), we first think of what does good-
DAG look like.

Similarly as (a), we first generate a BFS tree due to the excellent property that
it’s fixed by given starter. Then we make discussion on edge’s type :

• back-edge : Which will not exist in directed graph without rings.

• front-edge : Which will not exist, otherwise the BFS path will be this
front-edge.

• cross-edge : The cross-edge can still just exist between two vertices that
|height(u) − height(v)| ⩽ 1, otherwise the BFS process will reach by this
shorter path. However, there can be two directions of cross-edge,
from u→ v or v → u

The last difference is important. Since it allows the BFS tree of DAG to have
cross-edge — Only in the condition that all the cross edge between two
branches SubTree(u) and SubTree(v) are be same direction.

As shown in 5.2, although if we do the DFS and explore B○- F○ first, we will still
merge these two branch. But we can choose to explore B○- C○ first, which still
maintain two isolated branches.

■

Now we can introduce our counter example. All the construction idea is
from intuition above.

If G is a good directed acyclic graph, what we get from intuition is that the
BFS tree can still have cross-edge, as long as we guarantee all the cross-edge
are same direction.

So how to contradict the ascending order of the distances from s ? We just
link the deeper point to shallower point, then the topological order
will be different from distance order.

The example 5.3 shows a BFS tree, if we firstly explore A○- B○ in DFS, then
the DFS tree is exactly same as BFS tree, since B○ branch have no cross-edge
to C○ branch. Thus 5.3 shows a good graph.

But If we write out it’s one and only topological order: A→ C → E → B,
we find that it’s not an ascending order of the distances from A○, since B○ should
be closer than E○

5.3 Counter Example for (c)

if G is a directed acyclic graph where the vertex set V can be sorting in an
array L such that L is both an ascending order of the distances from A○ and a
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Figure 5.3: Counter Example for (b)

topological order. What lesson we learn from (b) is that there cannot exist a
edge that linking the deeper point to shallower point.

Combining this with the intuition, we can add cross-edge in different
direction but in the same height.

Figure 5.4: Counter Example for (c)

As shown in 5.4, the DAG’s one and only topological order is A → B →
C → E → D, and this order satisfy the ascending order of the distances from
A○ as well, so it satisfy the condition.

But since it has two directions of cross-edge, no matter which
branch to choose in a DFS exploration, the two branch is certainly
to be merged. So it’s not same as BFS tree and not a good graph.
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6 Reflection

Can’t remember total time cost, too much.
The difficulty may be ranked as 4. The proof in graph is seemingly more

logical than others; but workload is too hard this time.

Reference Consulting https://oi-wiki.org/graph/cut/ for Q4 (d)

Collaborator Inspired by Zhu Shengjia forQ5, and form my own explanation.
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Algorithm Design and Analysis
Assignment 3

Deadline: April 21, 2024

1. (30 points) You are given n jobs, where each job j has its processing time pj and weight
wj. We need to process all of them on one machine. We use Cj to denote j’s completion
time in a schedule. Our goal is to find the best schedule that minimizes the average
weighted completion time (i.e., min

∑n
j=1 wjCj

n
). Design a greedy algorithm for it.

2. (30 points) Amortized Cost of ADD. Let us consider the following situation. An
integer (initially zero) is stored in binary. We have an operation called ADD that adds
one to the integer. The cost of ADD depends on how many bit operations we need to
do. (one bit operation can flip 0 to 1 or flip 1 to 0.) The cost can be high when the
integer becomes large. Use amortized analysis to show the amortized cost of ADD is
O(1). Although there are different ways to prove it, you must use the potential function
method for this question.
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Algorithm 1 Find a maximal independent set with maximum weight
Input: A matroid M = (U, I) and a weight function w : U → R≥0.
Output: A maximal independent set S ∈ I with maximum w(S).

1: S ← ∅
2: Sort U into decreasing order by weight w

3: for x ∈ U in decreasing order of w:
4: if S ∪ {x} ∈ I:
5: S ← S ∪ {x}
6: endif
7: endfor
8: return S

3. (40 points) In the class, we learned Kruskal’s algorithm to find a minimum spanning
tree (MST). The strategy is simple and intuitive: pick the best legal edge in each step.
The philosophy here is that local optimal choices will yield a global optimal. In this
problem, we will try to understand to what extent this simple strategy works. To this
end, we study a more abstract algorithmic problem of which MST is a special case.

Consider a pair M = (U, I) where U is a finite set and I ⊆ {0, 1}U is a collection of
subsets of U . We say M is a matroid if it satisfies

• (hereditary property) I is nonempty and for every A ∈ I and B ⊆ A, it holds
that B ∈ I.

• (exchange property) For any A,B ∈ I with |A| < |B|, there exists some x ∈
B \ A such that A ∪ {x} ∈ I.

Each set A ∈ I is called an independent set.

(a) (8 points) Let M = (U, I) be a matroid. Prove that maximal independent sets are
of the same size. (A set A ∈ I is called maximal if there is no B ∈ I such that
A ⊊ B.)

(b) (8 points) Let G = (V,E) be a simple undirected graph. Let M = (E,S) where
S = {F ⊆ E | F does not contain a cycle}. Prove that M is a matroid. What are
the maximal sets of this matroid?

(c) (8 points) Let M = (U, I) be a matroid. We associate each element x ∈ U with
a nonnegative weight w(x). For every set of elements S ⊆ U , the weight of S is
defined as w(S) =

∑
x∈S w(x). Now we want to find a maximal independent set

with maximum weight. Consider the following greedy algorithm.
Now we consider the first element x the algorithm added to S. Prove that there
must be a maximal independent set S ′ ∈ I with maximum weight containing x.
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(d) (8 points) Prove that the greedy algorithm returns a maximal independent set with
maximum weight. (Hint: Can you see that Algorithm 1 is just a generalization of
Kruskal’s algorithm?)

(e) (8 points) Let U ⊆ Rn be a finite collection of n-dimensional vectors. Assume
m = |U | and we associate each vector x ∈ U with a positive weight w(x). For any
set of vectors S ⊆ U , the weight of S is defined as w(S) =

∑
x∈S w(x). Design an

efficient algorithm to find a set of vectors S ⊆ U with maximum weight and all
vectors in S are linearly independent.

4. How long does it take you to finish the assignment (including thinking and discussing)?
Give a score (1,2,3,4,5) to the difficulty. Do you have any collaborators? Write down
their names here.
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AI2615 Homework 3

Tao Rui 522030910024

May 5, 2024

1 Job Assignment

1.1 Intuition and Algorithm

We start from computing the neighbouring tasks. Suppose their already
exist T time before the task (wi, pi) and (wj , pj). We denote Y as the final cost.

Y (i before j) = wi(T + pi) + wj(T + pi + pj)

Y (i after j) = wj(T + pj) + wi(T + pj + pi)

The situation that i before j is optimal is: wjpi − wipj ⩽ 0, i.e.
wi

pi
⩾

wj

pj
Therefore we obtain a intuition of how a task can be regarded as

”Better” – it has a larger
w

p
Now we construct the order of finishing job from random start. For any

order, if there exist any two neighbouring tasks i and j such that
wi

pi
⩽

wj

pj
,

we can simply exchange these two order. It reduce Y by wjpi −wipj , and more
importantly, it does no impact to following tasks, since they still cost pi + pj as
a whole.

Thus we repeat this ”Bubble-sort” like operation. We finally obtain a strictly

decreasing order of

{
w

p

}
.

1.2 Correctness

Now we prove the optimization of this decreasing order tasks.
1○ Firstly, there must be no ”neighbouring increasing tasks”, proved by

intuition. What’s more, there must be no ”increasing tasks” with gap: If we do

three tasks in order (i, j, k), but with
wk

pk
⩾

wi

pi
⩾

wj

pj
. Then we can change the

order (j, k), then (i, k), by the intuition’s supporting respectively. Finally, the

stable order will always be strictly decreasing in

{
w

p

}
.
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2○ Secondly, if there’s some tasks with same
w

p
, we claim that the order

doesn’t matter. Consider two tasks (i, j), with a time gap t2 and several tasks
weight w2 in general.

Y1 = wi(t1 + pi) + w2(t1 + pi + t2) + wj(t1 + pi + t2 + pj)

Y2 = wj(t1 + pj) + w2(t1 + pj + t2) + wi(t1 + pj + t2 + pi)

⇒∆Y = w2(pi − pj) + t2(wj − wi) + (wjpi − wipj) (♣)

Notice the fact that
wi

pi
=

wj

pj
, and also holds for all task between (i, j).

Thus we can merge all tasks in t2 to a ”big task” with w′ = w2, p′ = t2.

What’s more,
wi

pi
=

wj

pj
=

w′

p′
, denote the ratio as k

(♣) ⇒ ∆Y = (w′ − p′k)(pi − pj) + (wjpi − wipj) = 0 + 0

Which implies that tasks with same
w

p
can be arbitrarily ordered.

Combining 1○ and 2○ we prove the correctness of this ”bubble like” algo-

rithm, such that optimal order should be decreasing order of
w

p
.

Figure 1.1: Tasks with same w
p - Merge into Big Task with Same w

p

1.3 Complexity

All we need to do is to sort the sequence of
{

w
p

}
in decreasing order. Since

we can calculate all w
p in O(n), and sort them in O(n log n), the total time cost

is O(n log n).

2 Amortized Cost of ADD

We define the potential function E(x) for number x as the number of 1.
Since 1 is the cause of additional carry, we should punish the number of 1 in
potential function.

Suppose E(x) = k, and k is made up of (kl, kl−1, ..., k1) separated 1s. Now
doing the ADD will cost k1 + 1 times, but also eliminates k1 1s and add one
more 1 due to carry. Thus the total cost is k1+1−(k1−1) = 2. Thus amortized
cost for n times ADD is 2× n = O(n). Each operation takes O(1).
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3 Matroid

3.1 All Maximal Independent Sets Are of Same Size

It’s trivial by exchange property. Suppose A, B are two independent sets
but |A| < |B|, then ∃x ∈ B − A , A ∪ {x} ∈ I, which implies that A is not
maximal. We can repeat this process until every independent sets are of same
size.

3.2 Matroid in Graph

We need to prove the set of ”None cycle edges” is independent set.
1○ hereditary property For all A ∈ I and B ⊆ A. Since A contains

none-cycle edge, any subset of these edges must not form cycle, too. Therefore
the subset B still contains a set of none-cycle edges, which makes B ∈ I.

2○ Exchange property Suppose there are two independent sets A, B and
|A| < |B|. Since there is no cycle, the |A| edges must be a tree that connects
|A| + 1 vertices. So set B at least connects one more vertex x than A.
Choose this x, and the edge that connects x in B (Denote as e). We claim that
A ∪ e still forms no cycle. — Because if adding x to the connect component
results a cycle, there must exist a path to x before, which contradictory to the
fact that A doesn’t connects x previously.

Combine 1○ 2○, (E,S) is matroid.

3.3 Prove the Greedy Algorithm – Part 1

Figure 3.1: Maximum Maximal S′ must contain largest w1

(All weights are already in decreasing order ) Suppose there’s a maximal set
S′ without the largest weight element w1. Then add w1 into S′, we know that
S′ ∪ {w1} /∈ I. Now consider which elements together causing this violation
of I? It must be a set of elements {w1, wj1 , wj2 , ..., wjl}. What’s more,
removing one of these elements S′ ∪ {w1} − wi can make it belongs to
I again.

That’s because if we have to remove two or more elements, the whole inde-
pendent set’s size is smaller than |S|. By exchange property, we can add other
element in then.
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Therefore, after adding w1 into S′, we can remove one other element to make
new set ∈ I again, but the total weights increases. Thus the maximum weight
w1 must exist in maximum maximal S′.

For Specific Graph Matroid – MST
Denote the edge with max weight as e0, and e0 connects (v1, v2). If e0 doesn’t
exist in final set, then there must be another path that connects (v1, v2), for
example v1 − u − ... − v2. Then replace (v1, u) by e, the whole edge sets still
forms no cycle, and is still connected, but the total weight is increasing by
weight(e0)− weight((v1, x)). So the maximum maximal S′ must contain e0.

3.4 Prove the Greedy Algorithm – Part 2

Figure 3.2: The Greedy Strategy is Optimal

We know that the largest element is certain to chose, now consider the first
element that differs from Optimal S

Which has two possible situations:

S doesn’t choose but S1 chooses This is impossible, since why S doesn’t
choose wi is because wi violates the requirements of I. So that if S1 chooses
wi, S1 /∈ I.

S chooses but S2 doesn’t choose Similarly with 3.3, we add wi to S2, which
makes S2 not belongs to Ianymore. Consider the fact that wi is chose in optimal
set S, wi is certain not violate the requirements with {w1, w2, ..., wi−1}.
So the violation must be with at least one element in {wj}, j > i. Then we
delete wj , S2 ∪ {wi}− {wj} ∈ I, and with a larger weights. Therefore S2 is not
maximum maximal set.

Concluding two situations, we know that the S generating by such greedy
strategy is with maximum weights.

3.5 Matroid in Matrix

First prove the ”linear independent” relation of vectors leads to a matroid
(U, I), where I = {F ⊆ U | F is linear independent}.
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1○ hereditary property It’s trivial that a subset of several linear indepen-
dent vectors are still linear independent.

2○ Exchange property If |A| < |B|, we know that the space rank of A is
smaller than space rank of B. Thus there must exist some vector in space B
that A cannot represent. Otherwise, all the vectors in B can be represented by
A, which leads to the contradiction that B is independent and has bigger rank
than A.

Therefore (U, I) is a matroid. We can simply apply Algorithm 1.

Time Complexity Sorting |U | weights cost O(m logm). Each time we need
to find out whether adding a new vector still holds linear independent, which
can be checked by Gaussian elimination. In m loops, total Gaussian elimination
cost is 13 + 23 + ...+ n3 = O(n3), until we already choose n vectors. Therefore,
the plain implementation is O(m logm+m× n3)

4 Reflection

Subjectively speaking, the difficulty has slightly decreased than previous
homework, I will rank 3 this time. But writing Latex still cost over 5 hours.

The matroid has been shortly introduced in Discrete Math, as a bonus home-
work. (Although that has nothing to do with problem 3...)

Reference None

Collaborator None
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Algorithm Design and Analysis
Assignment 4

Deadline: May 19, 2024

1. (30 points) Let G be a tree with n vertices. In this problem, we assume that it takes
O(1) time to store and multiply two integers. A vertex cover of a graph is a set of
vertices that includes at least one endpoint of every edge of the graph.

(a) (15 points) Design an O(n) time algorithm to count the number of vertex covers
in G. Prove the correctness of your algorithm and analyze its time complexity.

(b) (15 points) Design an efficient algorithm to count the number of minimum ver-
tex covers in G. Prove the correctness of your algorithm and analyze its time
complexity.

2. (40 points) Collecting Points. You have an array of integer points x1, x2, . . . , xn,
where each xi can be negative. Your goal is to move along the array to collect points,
following specific rules:

• In the first round, you choose the index to start.

• In subsequent rounds, you can move to the right for a selected length or stop
collecting. That is, assuming you are originally standing at index i, you can select
a move length k and move to i+ k.

• The objective is to maximize the total collected points.

(a) (10 points) Single-Length Move: Develop an O(n) DP algorithm to maximize the
collected points when only allowed to move one step to the right in each round.

(b) (15 points) Variable-Length Move: Extend the game to allow moves of length k

in the range [A,B] in each round, where A and B are two input positive integers.
Propose an O(n2) DP algorithm to maximize the collected points.

(c) (15 points) Optimized Algorithm: Enhance the algorithm’s efficiency to O(n).

3. (30 points) Min Cost Guideline. Consider n different ordered elements X = {x1 ≤
x2, ... ≤ xn}, and we are given the searching frequency of each element, denoted by
a1, a2, ..., an. We plan to design a search guide for users, which consists of a start point
c1 ∈ X and two functions S(c) : X → X and L(c) : X → X, where S(c) < c and
L(c) > c. When users follow the guide to search xj, they will first check c1; if xj = c1,
they succeed. Otherwise, they should move to c2 = S(c1) if xj < c1; or c2 = L(c1)

if xj > c1. Then, they repeat the process by comparing xj and c2. Finally, for each
specific xj, users will have a specific checkpoint sequence c1, c2, c3, ..., ck = xj. We use
ℓ(j) to denote the length of the sequence, and we aim to design a good search guide to
minimize

∑n
j=1 wj · ℓ(j) by an efficient DP algorithm.
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4. How long does it take you to finish the assignment (including thinking and discussing)?
Give a score (1,2,3,4,5) to the difficulty. Do you have any collaborators? Write down
their names here.
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AI2615 Homework 4

Tao Rui 522030910024

May 19, 2024

1 Minimum Vertex Cover

1.1 Count Number of Vertex Covers in G

Algorithm and Correctness

Since G is a tree, if a parent is not chosen in set, it’s children has to be
chosen. Thus we can divide the problem by dividing the situation into two
sub-situation: Choose Root or NOT Choose Root.

If we choose the root, the sub-problem will become exactly same problems
with all children, since the children can be chosen or not arbitrarily, just like a
new problem.

If we do not choose the root, all the children have to be chosen. Thus the
grandchildren are free to be chosen or not, the sub-problems become the new
problems with grandchildren.

We gradually obtain the basic case: If a node is leaf, the number of vertex
number is 2.

What’s important here is how to combine those sub-problems: If a node has
k children, with n1, n2, ..., nk vertex covers respectively, and each child has ki
children, with n11 ∼ n1k1

, ..., nk1 ∼ nknk
vertex covers respectively, then the

vertex cover number of this node is
k∏

i=1

nk +
k∏

i=1

ki∏
j=1

nij .

We can simplify the computing by storing each node’s vertex cover number.
Each node can be regarded as a state, N(v) refers to the number when v can
be arbitarily chosen.

The topological order is from leaf to above, since N(v) requires N(x) for all
v’s children and grandchildren.

The basic case: For all leaves, N(leaf) = 2, and for all parents of leaves,
N(leaf ′sparent) =

∏
l

N(l) + 1 = 2#Leaf + 1

The pseudocode is as follow. (From code point of view, the
∏

can be done
by for loop, initializing the multiplication by 1. This can deal with the situation
when one node doesn’t have grandchildren. The

∏
will be 1 in that situation.)
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- Record the vertex cover number of each node’s subtree in list number[v].
Do the Post-order Traversal:
- If the v is leaf, number[v]← 2

- else, number[v]←
k∏

i=1

number[vk] +
k∏

i=1

ki∏
j=1

number[vikj
]

Return number[root]

Complexity

The total traversal in tree costs O(n). Each node’s vertexx conver number
will only be charged twice, since it can only be children of one node and grand
children of one node. So total time cost is O(n).

1.2 Count Number of Minimum Vertex Covers in G

Intuition

Suppose we have a minimum vertex cover set. From greedy point of view,
no matter whether we choose the last third node in set, we can al-
ways abandon the leaves and choose leaves’ parents. Since #leaves ⩾
#leaves′ parent, such exchange is always better.

Therefore, no leaves should be chosen in OPT, all last second layer should
be chosen instead.

From the edges point of view, if the last second layer nodes are all
chosen, we can simply regard the last third layer as leaf situation.
And we repeatedly doing this greedy choice.

Algorithm

- Record the min-vertex-cover number of each node’s subtree in list
number[v].
- Record the vertex number of each node if not choose v in list nc[v].
- Record the vertex number of each node if choose v in list c[v].
Do the Post-order Traversal:

If nc[v] == c[v]: number[v] =
k∏

i=1

number[vk] +
k∏

i=1

ki∏
j=1

number[vikj
]

If nc[v] > c[v]: number[v] =
k∏

i=1

ki∏
j=1

number[vikj ]

If nc[v] > c[v]: number[v] =
k∏

i=1

number[vk]

Return number[root]
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Complexity

Same as 1.1, if we compute all the states from below to above(from leaves to
root), we will visit each state twice. Since each state updating takes O(3) = O(1)
times on max, total time cost is O(n).

2 Collecting Points

2.1 Single Length Move

Intuition

Notice that the total collected number summation can be determined by 1○
Start Point and 2○ End Point. Thus we can encode each state by End Point,
and traverse all Start Point to maximize total summation.

Algorithm and Correctness

Define dp[i] as the maximal summation when ending at i. It’s apparent
that dp[0] = num[0], and max

i∈{1,..,n−1}
dp[i] is the answer.

If we stop at i, we have only two possible ways can lead we here:
1○ We start at i. 2○ We come from num[i-1] (Since we can only move one step
each time).

Therefore the transmission function is: dp[i] = max{num[i], dp[i − 1] +
num[i]}. Which can be rewrite into more expand-friendly way:

dp[i] = num[i] + max {0, dp[i− 1]}

Above claim guarantees the correctness of this DP algorithm, since each
state’s max has considered every possible situation.

This DP-algorithm can be calculated easily, since the topological order is
simply from index 0 to n− 1.

- dp[0]← num[0]
For i in {1,...,n-1}:
- dp[i]← num[i] + max {0, dp[i− 1]}
Return max

i∈{0,..,n−1}
dp[i]

Complexity

Determining n DP states costs O(n) time, since each state only compares
two numbers’ maximal relation. At last outputting max dp[i] still cost O(n).
Thus total time complexity is O(n).
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2.2 Variable Length Move

Algorithm and Correctness

Similarly, the transmission idea is same. The only difference is: If we end
at i, we may 1○ Start at i, or 2○ Come from [i−B, i−A], since the last move
ranges in [A,B].

Therefore, we simply change the range of max, Anything else is same.

dp[i] = num[i] + max
i−B⩽j⩽i−A

{0, dp[j]}

Above claim still guarantees the correctness of this DP algorithm, since each
state’s max has considered every possible situation.

- dp[0]← num[0]
For i in {1,...,n-1}:
- dp[i]← num[i] + max

i−B⩽j⩽i−A
{0, dp[j]}

Return max
i∈{0,..,n−1}

dp[i]

Complexity
In n loops, we need compare B−A numbers to determine which one is maximum.
Thus total time cost is O(nk), where k may range from 1 to n. The algorithm
may perform as O(n2).

2.3 Improve by Monotone Queue

Algorithm

What we need in calculating each state is to find maximum among k num-
bers. These k numbers will update only one of them each time.

Using monotone queue, we abandon those smaller dp[i] with earlier position
in available range, since they will be out of range first and never be used.

- dp[0]← num[0]
- (sm[i](i ∈ [0, A− 1]) = dp[i])
For i in {1,...,n-1}:
- Append back dp[i−A] to sm
- Start comparing from back to front: If dp[i−A] ⩾ sm[−1], Pop back sm
- dp[i]← num[i] + max {0, sm[0]}
Return max

i∈{0,..,n−1}
dp[i]
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Complexity

Getting the available maximum, which is at the front of the queue, takes
O(1). Since each index will only be added to queue once, and will only be
popped once, total number’s comparison takes O(n). Thus total complexity is
O(n).

3 Min Cost Guideline

3.1 Algorithm

It’s reasonable that the average length of checking sequence can be deter-
mined by three things: 1○ Starting point. 2○ Which Section is in. 3○ The
jump function S(ci), L(ci). So naturally we encode states by two descriptors:
Section Left & Right and Start Point. i.e. we define AverageLength(l, r, i) as
the weighted average length of checking elements starting from xi in {xl, ..., xr}.

The algorithm is originated from the following transition equation:

AverageLength(l, r, i) =

ai × 1 +

(
i−1∑
k=1

ak

)
min

S(xi)∈{xl,...,xi}
(1 +AverageLength(1, i− 1, S(xi)))

+

(
n∑

k=i+1

ak

)
min

L(xi)∈{xi,...,xr}
(1 +AverageLength(i+ 1, r, L(xi))) (♣)

The original problem is equivalent to min
i∈{1,...,n}

AverageLength(1, n, i),

where the optimal i is the chosen starting point. To solve these states and
to achieve final problem, we point out the topological order of all these sub-
problems: Solving from the increasing order of sections’ length.

i.e. Firstly solve all the problems with r− l = 1, then solve all the problems
with r−l = 2, and so on. Since all the problems can break up to n sub-problems
with shorter length section.

3.2 Correctness

Inductively, for the section with length k, suppose we already know all the
optimal jumping function in section length k − 1.

After first checking, the index will either jump to left-hand side or right-
hand side, due to the relation between xj , c1. What’s important, both two
sides’ section length is shorter, which means the sub-problem and all following
sub-sub-problems are all solved.

If we enumerate all the possible jumping destination of S(c1) and L(c1)
and find the minimum length among them, we will get the global minimum of
sub-problem of section length k.
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3.3 Complexity

The basic cases that section length is 1 or 2, can be computed in O(1).

The total states number is the sections number n(n−1)
2 . In a section with

length of j− i, we need j− i− 1 comparing to determine the minimum between
all the possible jump functions’ results. Thus total time cost is

T (n) =

n−1∑
i=1

n∑
j=i+1

j − i+ 1

=

n−1∑
i=1

[
(i+ 1 + n)(n− i)

2
− (n− i)(i− 1)

]

∼
n−1∑
i=1

n2

2
+

i2

2
− ni

∼ O(n3)

4 Reflection

I suppose I will rank the difficulty as 4 for average, 4.5 for Q1, 3.5 for Q2,
3 for Q3. It’s highly depending on some ”lucky inspiration” in designing DP
algorithm.

Reference None

Collaborator None
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Algorithm Design and Analysis
Assignment 5

Deadline: June 6, 2024

1. (35 points) [Matrix Deletion] Consider a 01 matrix Ak×n = (xij), k ≤ n (a matrix A

whose elements are 0 or 1 and size is k × n). Si = {j | xij = 1} record the non-zero
position of row i ∈ [k]. We want to delete the rows step by step until the matrix is
empty following a specific deletion rule. D is a set initialized to ∅. The deletion rule is
as follows:

1. You can delete a row i only if row i hasn’t been deleted before and Si −D ̸= ∅.

2. Each time you delete a row, you should then delete an arbitrary column j ∈ Si−D

and add j to set D.

If a matrix can be deleted to empty following the rule above, we call it a good matrix,
and D is called a set of deletion basics of that good matrix. For example, the following
matrix 

1 0 0 0 1

1 0 0 0 0

0 1 1 0 0

1 1 0 0 1


is a good matrix with the following deletion process: delete (row 2, column 1), (row 1,
column 5), (row 4, column 2), (row 3, column 3). The deletion basics set D = {1, 2, 3, 5}.

However, the following matrix is not a good matrix.
1 0 0 0 1

1 0 0 0 0

1 1 0 0 0

1 1 0 0 1


(a) (15 points) Design a polynomial time algorithm to decide if the 01 matrix Ak×n

where k ≤ n is a good matrix.

(b) (20 points) Given two 01 matrices Ak×n and Bk×n where k ≤ n. Design a polyno-
mial time algorithm to decide if ∃D subset[n], |D| = k, such that A and B share
the same deletion basics set D.

For each part, prove the correctness of your algorithm, and analyze its time complexity.
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2. (35 points) Consider solving a maximum flow problem (G = (V,E), s, t, c) by using the
Dinic Algorithm. In this problem, we assume that the capacities for all edges are 1:
c(e) = 1 for each e ∈ E.

(Notice: There is no pair of anti-parallel edges: for each pair of vertices u, v ∈ V , we
cannot have both (u, v) ∈ E and (v, u) ∈ E. Every vertex is reachable from s.)

(a) (15 points) Prove the algorithm runs in O(|E|3/2) time.

(b) (10 points) Let f be the flow after 2|V |2/3 iterations of the algorithm. Let Di be
the set of vertices at a distance i from s in the residual network Gf . Prove that
there exists i such that |Di ∪Di+1| ≤ |V |1/3.

(c) (10 points) Analyze the time complexity by using both |V | and |E|.

3. (30 points) In this question, we will prove König-Egerváry Theorem, which states that,
in any bipartite graph, the size of the maximum matching equals the size of the minimum
vertex cover. Let G = (V,E) be a bipartite graph.

(a) (6 points) Explain that the following is an LP-relaxation for the maximum matching
problem.

maximize
∑
e∈E

xe

subject to
∑

e:e=(u,v)

xe ≤ 1 (∀v ∈ V )

xe ≥ 0 (∀e ∈ E)

(b) (6 points) Write down the dual of the above linear program, and justify that the
dual program is an LP-relaxation to the minimum vertex cover problem.

(c) (6 points) Show by induction that the incident matrix of a bipartite graph is totally
unimodular. (Given an undirected graph G = (V,E), the incident matrix A is a
|V | × |E| zero-one matrix where aij = 1 if and only if the i-th vertex and the j-th
edge are incidents.)

(d) (6 points) Use results in (a), (b), and (c) to prove König-Egerváry Theorem.

(e) (6 points) Give a counterexample to show that the claim in König-Egerváry The-
orem fails if the graph is not bipartite.

4. How long does it take you to finish the assignment (including thinking and discussing)?
Give a score (1,2,3,4,5) to the difficulty. Do you have any collaborators? Write down
their names here.
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AI2615 Homework 5

Tao Rui 522030910024

June 7, 2024

1 Matrix Detection

1.1 Detect Good Matrix

Figure 1.1: Convert Detection into Maximum Flow of Graph

Build Graph G
- For matrix k × n, build the first layer with k nodes and second layer with n
nodes.
- The first layer connects to source and second layer connects to target, all
edge weight = 1.
- For Si in S:
- If xij = 1: connect node ki and nj with edge weight = 1

Solve Maximum Flow on G
- f = Dinic(G, s, t)
- If f = k: good matrix
- else: Not good matrix

Algorithm

Correctness The correctness of converting this problem to maximum flow
problem is by Hall’s Marriage Theorem.

1



Consider the deletion rule as a selecting or matching problem between rows
and columns. The requirement ”Only can delete row i that has unique column
j with xij = 1” ensures each element xij = 1 can only help reduce one row.
Therefore, in order to delete all k rows, we have to choose out k elements 1 with
unique columns.

The correctness of building the maximum flow graph is as follow. The source
connects k nodes with v = 1, indicates each row can be deleted once. The target
connects n nodes with v = 1, indicates each column can be chosen to delete
corresponding row once. The i-th node in k is connected to the j-th node in n
if xij = 1, and the value may be set to 1, convenient for proof.

Complexity Building the graph at most takes O(nk) = O(n2) time, since
looking at all elements that xij = 1 will cost O(nk). If we use Dinic’s algorithm

to solve the max-flow on this bipartite matching graph, it will cost O(|E| ·
√
|V |,

where |V | = n+k, n+k ⩽ |E| ⩽ nk. Thus Dinic will cost O(n2 ·
√
n) = O(n5/2).

Since n5/2 > n2, total time cost is O(n5/2).

1.2 Detect Sharing Same Deletion Basics

Figure 1.2: Merge Two Graph by Direct Link Between Same Column

Algorithm

Correctness The idea is same as checking the good matrix. Each part of the
merged graph will result in a valid flow, which is a valid matching between row
and column, which is a series of valid deletion operations.

What’s new is to connect the middle layers(indicates columns)
one by one. This guarantee each column can only be chosen once
simultaneously by both matrix.

2



Build Graph G
- For matrix k × n, build the first layer with k nodes and second layer with n
nodes. And copy these nodes and reverse them for another matrix.
- The first layer connects to source and last layer connects to target, all edge
weight = 1.
- For Si in S1:
- If xij = 1: connect node ki1 and nj1 with edge weight = 1
- For Si in S2:
- If xij = 1: connect node ki2 and nj2 with edge weight = 1
- Connect the second layer and third layer one by one, with edge weight= 1

Solve Maximum Flow on G
- f = Dinic(G, s, t)
- If f = k: Have same deletion basics
- else: Not Have same deletion basics

Complexity Building the graph at most takes O(2nk) = O(n2) time.
Since this graph still share the same critical property with bipartite graph:

Each edge has weight 1, each turn the finding of block flow will at most cost
O(|E|), since each edge will be at most checked once and deleted.

Thanks to another critical property: V
{s, t} exist one degree. Thus after |V | turns, the number of vertex disjoint path
= number of edge disjoint path = current maximum flow, which is at most
|V |√
|V |

. Thus it will cost at most O(
√

|V |) turns to stop.

So running Dinic’s alogrithm on this graph still cost s O(|E| ·
√
|V | =

O(n5/2). Therefore total complexity is O(n5/2).

2 Dinic Algorithm

2.1 Prove Running Time O(|E|3/2)
With the property that capacity for all edge is 1, we can conclude that

finding blocking flow in each turn will at most cost O(|E|), since each edge will
only be checked once and deleted.

Now prove the iteration will terminate at most after 2
√
|E| turns.

Suppose Gf is the residual network after
√

|E| rounds. Then the shortest

path from s to t in Gf is at least
√
|E|. Since each edge’s capacity is 1,

all the blocking paths is disjoint. The maximum flow = number of edge
disjoint path. Since each edge disjoint path has to cost at least |E| edges, total

number of path is at most
|E|√
|E|

=
√
|E|.

Each turn of updating residual network increases the flow at least 1, therefore
there remain at most

√
|E| rounds of updating.
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Total time complexity is O(|E|
√
|E|) = O(|E|3/2)

2.2 Prove |Di ∪Di+1| ⩽ |V |1/3

After 2|V |2/3 rounds iterations, the minimum path length is at least 2|V |2/3.
Since all the edge has capacity of 1, we cannot use each edge more than once.

Suppose ∀i, |Di ∪Di+1| ≥ |V |1/3, which indicates that ∀i, |Di| >
1

2
|V |1/3.

Since the minimum path from s to t is 2|V |2/3, the i is count from 0 to
2|V |2/3. Thus the total vertex number, which contains all possible Di, is larger

than 2|V |2/3 ×
1

2
|V |1/3 = |V |. Which leads to contradictory, must ∃i, |Di ∪

Di+1| ⩽ |V |1/3.

2.3 Analyze Complexity Using |V |, |E|
Running the Dinic algorithm, each round of finding block flow will cost at

most O(|E|) time, due to the all-1 edge capacity.
After 2|V |2/3 rounds, we will prove there exists at most another |V |2/3 rounds

to terminate.
By question (b), ∃i, |Di ∪ Di+1| ⩽ |V |1/3. We can construct the cut by

dividing all points in s, D1, D2, ..., Di into left side, and remain points into
right side.

Note that there will not be any edges from Dj , j < i to right side, otherwise
the right-side’s points should have smaller distance to s.

Thus the only edges from left side to right side, is the edges from Di to
Di+1. Since |Di| + |Di+1| ⩽ |V |1/3, the edge number between two sets are

|Di| × |Di+1| ⩽

(
|Di|+ |Di+1|

2

)2

⩽
|V |2/3

4
.

Therefore the minimum cut is less than
|V |2/3

4
, which indicates the maximum

flow in residual network is less than
|V |2/3

4
, which further indicates the remain

iterations will terminate after at most O(|V |2/3) rounds.
Thus the total time complexity is O(|E||V |2/3).

3 König-Egerváry Theorem

3.1 LP-Relaxation for Maximum Matching Problem.

Suppose the variables xe ∈ {0, 1} represents whether an edge is chosen in
the matching problem. Since it’s maximum matching is bipartite graph, the
number of edges is the number of matching. Thus the objective is to maximize
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∑
e ∈ Exe. And the constraints are, each node can at most be chosen once,

∀v ∈ V,
∑

e=(u,v)

= 0 or 1.

The relaxation of this ILP is to relax xe to continuous value xe ∈ [0, 1]. Thus
the objective is not changed, and constraints change to: for each node, total
selection of this node is smaller than 1. Which is ∀v ∈ V,

∑
e=(u,v)

⩽ 1, and of

course xe ⩾ 0.
Thus we prove it’s the LP-relaxation for maximum matching problem.

3.2 Dual Problem

The objective is x(v1,vi)+x(v1,vj)+x(v2,vk)+ ...+x(vw,vi)+ .... Now consider
the constraints, each edge x(vi,vj) will exist in two constraints only, which is the
constraint about vi and vj . What’s more, the factor of x(vi,vj) and x(vj ,vi) are
both 1.

Suppose we multiply yi to constraint i, the LP will become:

min
∑
i∈|V |

yi

s.t. yi + yj ⩾ 1 ∀(i, j) ∈ E

yi ⩾ 0 ∀e ∈ E

We can interpret this as minimum vertex cover. yi represents each vertex’s
chosen weight, which has been relaxed to [0, 1]. Correspondingly, the constraints
require each edge has total chosen weight larger than one. And Of course yi ⩾ 0.

Thus we prove this dual LP is the relaxation of minimum vertex cover.

3.3 Prove Incident Matrix Unimodular

Prove this by induction: 1○ Basic case: If incident matrix size is 1 × 1,
detA = 0 or 1, holds.

2○ Suppose k× k matrix holds, consider the matrix with size k+ 1× k+ 1.
The matrix can be divided into three cases: One column all zero; One column
with single 1; All column has two 1.

If one column is all zero, detA = 0. If one column has single 1, detAk+1×k+1 =
(−1)i×detAk×k. By deduction, we known that detAk×k ∈ {−1, 0, 1}, therefore
detAk+1×k+1 ∈ {−1, 0, 1} still holds.

If all column has two 1, consider two facts:

• Each edge connects only two vertices, thus one column can have at most
two 1.

• Each edge must connect two vertices in different side A and B.

Therefore, each column must have one 1 in the A side and one 1 in the B
side. Adding all rows of A side, we will obtain a row of 0/1. Adding all rows
of B side, we will also obtain a row of 0/1, which are one-to-one correspondent
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Figure 3.1: All column has two 1

to the previous row. Thus we minus the A row by B row, we will generate an
all-zero row, which indicates that detA = 0.

Combine three situations of 2○, we prove that incident matrix of bipartite
graph is unimodular by induction.

3.4 Prove König-Egerváry Theorem

Consider the two LP problems’ factor matrix.
The LP-relaxation for the maximum matching problem has |E| variables and

|V | constraints, the factor matrix is |V | × |E|. For each row, the 1 will appear
at those columns which that edge contains this vertex. This is the definition
of incident matrix. Thus the factor matrix of LP-relaxation for the maximum
matching problem is a incident matrix A, which is unimodular.

The LP-relaxation for the minimum vertex cover problem has |E| constraints
and |V | variables, the factor matrix is |E|×|V |. For each row, there will be only
two 1, appear at the two columns that incident to this edge. Thus the factor
matrix of LP-relaxation for the maximum matching problem is transpose of a
incident matrix A⊤, which is unimodular.

Consider that both LP problem’s factor matrix is unimodular, their optimal
value can both be obtained by interger. What’s more, by strong duality theorem,
their optimal value is same, which indicates that they can obtain a same optimal
value by integer, i.e. the size of the maximum matching equals the size of the
minimum vertex cover.

3.5 Counter Example When Not Bipartite Graph

Suppose a graph with three nodes, since there doesn’t exist ”two type”, the
incident matrix may have some unexpected edges, detA = 2.

In this situation, the minimum vertex cover is 2. The maximum matching is
1, since choosing any two edges will cause one vertex to be chosen twice. Which
indicates König-Egerváry theorem fails.

6



Figure 3.2: Counter Example of Non-Bipartite Graph

4 Reflection

Difficulty: 5, though several similar prove scheme has been taught in class.

Reference None

Collaborator For question 1.(b) and 2.(c), obtain inspiration from Zhu Shengjia.
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Algorithm Design and Analysis
Assignment 6

Deadline: June 16, 2024

1. (30 points) Given an undirected graph G = (V,E) with n = |V |, decide if G contains a
clique with size exactly n/2. Prove that this problem is NP-complete.

2. (40 points) Given an undirected graph G = (V,E) and an integer k, decide if G has a
spanning tree with maximum degree at most k. Prove that this problem is NP-complete.

(a) (20 points) Prove it is NP-complete when k is an input.

(b) (20 points) Prove it is NP-complete when k is any fixed constant.

3. (30 points) Given a collection of integers (can be negative), decide if there is a subcol-
lection with a sum of exactly 0. Prove that this problem is NP-complete.

4. How long does it take you to finish the assignment (including thinking and discussion)?
Give a score (1,2,3,4,5) to the difficulty. Do you have any collaborators? Please write
down their names here.

Page 1 of 1



AI2615 Homework 6

Tao Rui 522030910024

June 8, 2024

1
n

2
Size Clique Existence is NP-complete

Firstly we prove checking the existence of a clique with size n
2 is NP problem.

For a graph G as input x, and any n
2 chosen vertices as input y. We can simply

check vertex-by-vertex whether every vertex has edge to other n
2 − 1 vertices in

O(n2/4) time. This verifier decides whether given n
2 vertices are clique in O(n2)

time, which means this is NP problem.
Secondly, we try to Karp-reduce Independent Set problem to this clique

check problem.

1○ If k =
n

2
, the reduction is direct. Since a independent with size k in G

is equal to a clique with size k in reversed graph Ḡ. And we already have the
solver to check existed clique with size k = n

2 .

Figure 1.1: Independent Set Reduce to Clique by Adding Vertices to Ḡ

2○ If k <
n

2
. In Ḡ we can only check the existence of clique with size

n

2
larger than expected k. We can add n − 2k new vertices as a complete graph,
and connects each new vertex to every previous vertex. We denote as

Gcomplete := Ḡ+Kn−2k + {(u, v) : u ∈ Kn−2k, v ∈ Ḡ}

1



In Gcomplete, the new n− 2k vertices are sure to exist in any possible clique,

thus the checking of a clique size
|Gcomplete|

2
= n−k is equal to checking a clique

size (n− k)− (n− 2k) = k in previous Ḡ, and further equivalent to existence of
a independent set size k in original G.

3○ If k >
n

2
. We can add 2k − n new single vertices to the reversed graph

Ḡ. These new single vertices will never appear in any clique, since they have
no edges connecting to other. Thus the adding operation only increase the
problem’s vertex size. We denote this graph as

Gsingle := Ḡ+ {vi : For i in range(2k-n)}

The checking of a clique size
|Gsingle|

2
= k is exactly equal to checking a

clique size k in previous Ḡ, since those single vertices do nothing. And this
further equivalent to existence of a independent set size k in original G.

What’s more, the construction of Ḡ and Gcomplete and Gsingle cost at most
O(|E|) = O(n2) time, simply enumerate all vertices and adding new edge. Thus
the reduction of input is polynomial. Combine 1○ 2○ 3○, we Karp-reduce the

independent set problem to checking existence of clique with size
n

2
. Since

Independent Set is NP-hard, this NP problem is NP-complete.

2 Spanning Tree with Degree k

2.1 k is Input

We try to Karp-reduce the Hamilton Path problem to Spanning Tree with Input k.
Suppose the input is graph G and we want check a Hamilton Path existence,
it’s equivalent to check existence of a spanning tree with max degree 2.

By Lemma, the reduction of the problem do not need changes on input.
HamiltonPathExist(G) = SpanningTreeK(G, 2). Since checking given edges
whether form a spanning tree costs O(|E|) = O(n2) times (Traverse edges, and
record whether each vertex is covered [1, k] times), Spanning Tree with Input
Degree k is NP-complete.
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Lemma: Hamilton Path is equivalent to Spanning Tree with max degree 2

⋆ Proof ⋆

1○ If we have a Hamilton path, each vertex is achieved once, thus the number
of edges connected to it is at most 2. Only two vertices has degree 1, which is
the starter and ending (Otherwise there exist cycle). Therefore the total edge
number is |V | − 1, and they cover all vertices. This indicates that the Hamilton
path is exactly a spanning tree of G, and also satisfies max degree ⩽ 2.
2○ If we have a spanning tree with max degree ⩽ 2. Since there’s no cycle,
there must be at least one vertex v0 with degree 1. Start from v0. For i >
1, d(vi) ∈ {1, 2}: If we reach a vertex with degree 2, we can further go to next
vertex; if degree is 1 but haven’t traverse all vertices, it’s must not be a spanning
tree of G, since all visited vertices has no extra degree to link elsewhere, the
visited vertices is disconnected with non-visited vertices. Therefore, we can go
along the vertices with all degree = 2, until the last one. This path is exactly
Hamilton path on G.

2.2 k > 2 is Constant

We try to Karp-reduce the previous problem to Spanning Tree with constant k0.
For each previous vertex in G, we add k0 − 2 new vertices connected to it,

results in a new graph G′. Since the spanning tree requires all vertices to be cov-
ered, each previous vertex has to at least choose those k0−2 edges. The remain
degree limitation is 2, and remain graph is G, which is the original problem we
want to solve. Thus SpanningTree2(G(V,E), 2) = SpanningTreeK0(G′, k0),

Since k0 is given constant, constructing new graph G′ needs O(nk0) time,
which is linear, Karp-reduction holds. What’s more, the verifier is same as
checking with max degree 2, both cost O(|E|) = O(n2) time. Therefore the
Spanning Tree with max constant degree k is NP-complete.

3 Subset Zero Sum

Intuition We want to Karp-reduce the original Subset Sum problem to this
problem. A natural idea is to add a new number −k, A′ = A∪ {−k}. However,
this cannot force −k to be chosen, a counter example is as follow: A = {1,−1}
and sum requires 100, which is impossible. But if we transfer the problem to
A′ = {1,−1,−100}, the sum of 0 is obtained by original number 1,−1.

To force the new adding number −k to be chosen, we can simply consider the
problem with all positive numbers. The Subset Sum with Positive has already
been proved to be NP-complete, reduced from Independent Set with Size k.
Thus the reduction SSpositive ⩽k SSzero proves SSzero is NP-complete.

Karp-Deduction If A is all positive (Delete those original 0 in A since they
are useless), the summation of zero in A′ must require −k, since −k is the only
negative number.
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Figure 3.1: Positive-Subset-Sum Reduce to Subset-Zero-Sum

NP-Complete The Subset Zero Sum can be verified in O(n) time, since we
can add the given chosen k numbers and check whether it’s 0. Thus the problem
is NP problem. Combine the NP-hard we have proved above, the Subset Zero
Sum is NP-complete.

4 Reflection

Difficulty: 2.5. It’s the first time for me an algorithm homework has been
done within 5 hours. :) Considering the overall workload this semester, this
course has to be open in first eight weeks. Thanks for grading my homework
meticulously.

Reference None

Collaborator None
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